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Stick-slip motion of turbine blade dampers

By F.Preirrer! aAxD M. HasgK?

! Department of Mechanical Engineering, Technical University of Miinchen, (lermany
2 Messerschmitt—Bolkow—Blohm, Helicopter Division, Ottobrunn, ¥ vy

Turbine blade dampers are small elements of a parabolic configuration usually
fabricated from sheet steel. They are positioned loosely between the roots of turbine
blades improving the damping of blade vibrations by generating dry friction from
the relative motion of blades and damper. This paper presents a theoretical approach
to these stick—slip vibrations and compares theory with measurements. Additionally,
some design aspects of such dampers are discussed by considering the damping
behaviour in relation to important design parameters.

1. Introduction

Turbine blades in gas-turbines are components subjected to extremely high loads
with respect to force and temperature. They are excited by pressure fluctuations in
the hot gas-stream mainly with frequencies that are whole multiples of the rotor
angular frequency. Because of an extreme centrifugal force field there is practically
no relative motion between the blade roots and the turbine disc and, additionally,
structural damping is very small. Therefore, damping devices are used; these are
located between the blade platforms and pressed into this gap by centrifugal forces.
The blade vibrations induce relative motion between dampers and blade platforms
leading to dry friction and thus to a damping effect. The main problem connected
with the operation of such damper devices consists of the centrifugal forces, which
can press these dampers into the gap in such a way that there is only static but no
sliding friction and consequently no damping. Therefore, damper design must follow
the requirement to produce as much sliding friction as possible and to minimize static
friction situations. This can be achieved by proper design of the damper form, which
usually is parabolic or circular, and by an appropriate choice of damper parameters
like mass and contact angles.

Proper design of that kind cannot be done by systematic experiments, which
would be too expensive. Therefore, we develop in the following a planar model of a
turbine blade damper which allows some design parameter variations. The model
consists of two blades, each one represented by two masses only and of the damper
in a parabolic or circular form. The damper possesses two points of contact, where
the parabola or circle of the damper meets the straight line of the blade platform. In
these contact points we may have stiction, slippage or rolling without sliding. The
possibility of rolling with sliding is not considered. The mathematical model for this
configuration will be a patching method putting together the solutions of the various
sets of equations of motion that are valid from one friction event to another.

The literature on frictional vibrations is large, the references give a small selection
with some emphasis on turbine damping problems. Some principal early works are
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blade damper

Figure 1. Typical blade configuration.

connected with names like den Hartog (1931), Klotter (1938), Reissig (1954), Magnus
(1976) and Kato (1974). The problem of den Hartog has been reconsidered by Marui
(1984). All these contributions illustrate the well-known fact that analytic solutions
for dry friction problems can only be achieved for very simple systems. Some newer
considerations on the general problems of frictional behaviour may be found in
Guckenheimer (1983), Schiechlen (1983) and Shaw (1986), where, in particular,
Guckenheimer (1983) applies modern mathematical methods of nonlinear dynamics
and topological mechanics to the problem. Authors like Panagiotopoulos (1985),
Moreau (1985a, b, 1988) and Lotstedt (1981, 1982, 1979) take quite a different
approach by applying new methods of convex analysis to stick—slip problems, which
results in better mechanical definiteness and less numerical difficulties. Some typical
contributions to the problem of turbine blade damping are given by Beards (1985),
Goodman (1956), Griffin (1981), Hundal (1979), Jones (1978, 1979), Lalanne (1985),
Ramamurti (1984), Rao (1980) and Sinha (1983).

At the Technical Institute of Munich stick—slip and impulsive processes have been
the matter subject of research for many years. Pfeiffer (1984) presents a starting
point and Pfeiffer (1991) gives an overview. Hajek (1990) is the main basis of this
contribution and the work of Brandl (1988) contains some general remarks on dry
friction, whereas Brandl et al. (1987) present a fundamental theory on an order-n-
algorithm for multibody systems.

2. Modelling
2.1. Mechanical model

Figure 1 shows a typical configuration of a turbine blade with platform and blade
root, which is connected with the disc. The blade damper is usually located between
the supporting surfaces of two adjoining blades. If we have a certain number of
blades, n, around a disc there is the same number of blade dampers. We may assume
that all blade dampers contact the supporting surfaces along a straight line.

With n blades and dampers we then have 2n contact lines, where stick—slip
processes take place. Theoretical formulation of such a large frictional system
involves no problems in general, but a numerical realization would probably run
aground due to excessive computing times. Therefore, the model is simplified further.
We consider only a planar mechanical model with two blades and one damper and
thus with two points of contact, which should be sufficient to evaluate parameter

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. Mechanical model of blade damper configuration.

tendencies. Further, we restrict the model to the lower eigenfrequencies of the blade,
which makes some sense due to a practical experience that these lower shares of the
spectrum have most influence on the damper motion. These assumptions and
simplifications lead to a mechanical model as shown in figure 2.

Each of the two blades is substituted by two masses and by two spring-dashpot
systems. The contour of the damper, the locations of contact points and the
inclination angle of the supporting surface are modelled with the real turbine data.
The magnitudes of the two blade masses and of the spring—dashpot combination are
determined by a corresponding modal reduction of FEM-calculations. The system is
excited by gas-stream fluctuation forces represented in the model by the forces F,
and Fy,, which are known from the gas-turbine aerodynamics.

The mechanical model possesses five degrees of freedom in the case of sliding
friction on both contact points. If one of the contact points starts a transition to
static friction one degree of freedom is lost, and we are left with four degrees of
freedom. In the case of static friction in both contact points only three degrees of
freedom are left. In any case of static friction this situation always means rolling
without sliding because the blades continue to vibrate thus generating movements
of the contact points. We shall exclude a separation of the dampers from the
supporting surfaces, because it will be unlikely within the existing very large
centrifugal force field.

From this the following combination of degrees of freedom are possible (figure 2):
sliding K1, K2, 4" = (91,45 05 90> 05)- (1)
sliding K1, stiction K2, q" = (91,92 95, 0a)> (2)
stiction K1, sliding K2, q" = (91,95 95, 94) (3)
stiction K1, K2, q" = (41,92 ) (4)

The damper mass possesses only one rotational degree of freedom, all blade masses
have translational degrees of freedom.

Phil. Trans. R. Soc. Lond. A (1992)
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Kl-systern
y

Kz-system

Figure 3. Coordinate systems for the damper and its contact points.

2.2. Geometry and constraints

Although the model of figure 2 looks quite simple, the geometry in the points of
contact and therefore the kinematical properties will be complicated. In a first step
we consider coordinate systems.

For most kinematical relations and for the equations of motion we use an inertially
fixed xy system (index ‘0’ in figure 3). For convenience it is sometimes better to have
the system ‘1’ of identical origin as system ‘0’ but rotating with the damper angular
velocity ¢,. The &7 coordinate system ‘2’ is a body-fixed frame of the damper
especially well suited for contact geometry. The same is true for the systems K1, K2
fixed in the blade platforms.

The main aim of the geometrical considerations consists in evaluating the closed
loop conditions for the four possible movements, sliding in both contacts, sliding in
one contact only and stiction in both contacts. For any of these modes we have the
two closing conditions (figure 4)

Ary =rg,—F —r5 =0, 6))
Ary = Py —Fy—rs =0, (6)
with
Tgi & X; L
ofwi =\ Uxi | =M ) oti=|¥] os={us) (=12). (7)
0 0 0 0

The left index signifies the corresponding coordinate frame. The transformation
matrix from base 2 to base 0 is simply

cosq, —sing, 0
Ay =\|sing, cosq; 0. (8)
0 0 1

The equations (5), (6) are four scalar equations for six unknowns. We get two
additional equations by the requirement that

(dn/dg)parabola = (dn/dg)straightline 9)
Phil. Trans. R. Soc. Lond. A (1992)
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Stick—slip motion of turbine blade dampers 507

Figure 4. Contact geometry of damper and platforms.

for each of the contact points K1, K2. With the equations (5), (6) and (9) we have
now six scalar equations for the unknowns (xg,, ¥k, &, &, s, ¥s). It is convenient to
evaluate (5) and (6) in the coordinate frame ‘0’ and (9) in the base ‘2’°. The closing
equations have to be supplemented by the contour equations for the parabola and
the two straight lines, which write

parabola (base 2), 7 = p, §2+p,, (10)
straight line (base 0), yyx; = a; 2k, +b,(q) (¢ =1,2), (11)
where, according to figure 4, p; < 0 and p, > 0. The coefficients of (11) follow directly
from figure 4:
a, =coty, a,=—coty, b, =b,+ys—q, eot'y,}
by = bo+yso+qscoty, by =p,—(coty)/2p,.

The magnitudes b,, and yg, are those for the undisturbed reference configuration
(losol = ¥so in (7)). Equations (5)—(11) always yield a uniquely defined solution for
the unknowns (&, &, Tk, Txa, s, ¥s) dependent on the generalized coordinates g ; that
is

(12)

cot (y+5) cot (y = 5)
_ L coblytay) . _ cobly—gy) 13
&=+ 2p, b 2p, , "
. sin®y cos y
TRy 2(91.+93)+2p1sin2(7+q5)Sin(7“Q5)’
14
=Yg, +95)— sin®y cosy "
e T g Sin (4 g,) sin® (Y= q5)”
¥ = wy; — £y cos g5+ (py 1+ p,) sing;, (15)

Ys = (@, 2, +b,) — &, 8ings — (p, 1 +p,) cos g, J
These equations may be linearized with respect to the generalized coordinate g;. The

Phil. Trans. R. Soc. Lond. A (1992)
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|

Figure 5. Rolling without sliding in one point.

derivation of the velocities and the accelerations from the holonomic-scleronomic
constraints (13)—(15) is straightforward, although it might be advisable to perform
the following developments by application of a formula manipulator (Hajek 1990).

With equations (13)—(15) we know the constraint for a motion with sliding in K1,
K2 (equation (1)). The second important case is sliding in one point and rolling
without sliding in the second point (equations (2), (3)). From figure 5 we see that a
differential change of the vector (ry,) to (rg;+drgk,) can be decomposed into two
parts. The first part is the differential change (dg,) of the coordinate q,, and the
second part is a differential contribution due to rolling. From this we get

dq, siny
o(Fy +drg) —o(Fgy) =| 0 |+ cosy |ds,, (16)
0 0

where (ds,) easily follows from the straight line equation (11)

ds; = v/ (14 (yx,)?) dag,. (17)

On the other hand the differential (dxy,) is not free, but constrained by rolling with
the local radius of curvature R, = 1/k,

ds, = R, -dg; = dg,/x,, (18)

Ky =1 /[1+ ()T (19)

Similar arguments hold, of course, for rolling without sliding in point K2. Combining
the equations (14), (16), (17), (18), (19) and the comparable equations for K2 we come

out with an additional constraint for the configuration rolling without sliding in one
point (equations (2), (3)) in the linearized form

A, = ¢;—p,(¢,—¢3) = 0, for KI, (20)
Agy = 45+ (4, —gs) = 0, for K2. (21)

The nonlinear form (in ¢,) again may be derived by applying a formula manipulator
system (Hajek 1990).

Phil. Trans. R. Soc. Lond. A (1992)
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Stick—slip motion of turbine blade dampers 509

In the last case of rolling without sliding on both contact points the damper sticks
between the two masses m, and m, (figures 2, 5) and no rotation g, occurs. The masses
m,, my, mg move as one mass. Therefore, the constraints are simply

=4y =14 ¢;=0. (22)

2.3. Relative kinematics

The absolute velocities of the damper and the blade bases (degrees of freedom ¢,
q,, figure 2) can be derived from above expressions. For the two contact points on the

damper side we get
&g 0 x;
(Vki)p = (?/s)+( 0 ) X(?/z) (1=1,2). (23)
o/ \¢/ \o

The blade supporting surfaces move at the same points with

¢ qs
(vg)e =0} (vka)s=|0]. (24)
0 0

The difference of blade and damper velocities must be projected into the direction of
the supporting surfaces, which results in the following expressions for the four cases
(1)-(4):

sliding K1, K2:

1 .1 . —CO8Y(yy —Y,) +siny(x, —,)

Frenn = QIZSiny+Q3ZSiny+Q5 2siny cosy ’
(25)

1 .1 . — 008 Y (Y —Yy) —siny(x; — )

Vrete = QIQSin'y+Q325in7/+Q5 2siny cosy ’

sliding K1, stiction K2:

» =g (xl_xz) g (.701-—.7(:2)
e M cos y(y, —y,) Fsiny (@, —ay) T cosy(y, —y,) Fsiny(@, —a,) L (26)

Urel2 = 05

stiction K1, sliding K2:

Vrenn = 0,

(2, — ) . (2, —2,) (27)

Leos y(yy —ya) —siny(@, —xy) T cosy(y, —y,) —siny(x; —xy)’

Vrer2 = ¢

stiction K1, K2:
Vrel1 = O> Vielg = 0. (28)
These are again nonlinear equations. For convenience and with regard to the

computer program the terms with (x, —x,) and (y,—y,) have not been expressed
explicitly by (¢,,¢.,¢;5) (see (11) and (14)).

Phil. Trans. R. Soc. Lond. A (1992)
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2.4. Dynamics

The constraints as discussed in §2.2 produce constraint forces which appear as
normal or tangential contact forces in the two contact points depending on the type
of motion (equations (1)—(4)). For the free motion type with five degrees of freedom
(g€ B®*) we can formally write down seven equations of motion, six momentum
equations for the four masses and the damper and one moment of momentum
equation for the damper (figure 2). In addition to the five unknown accelerations
G;(t=1,...,5) we have two unknown normal forces in the contact point. If we
eliminate from the momentum equations for the damper the accelerations (g, %)
with the help of the constraints (15), (13), (14), we are left with exactly seven
equations for seven unknowns.

Similarly, if rolling in one point is going to happen, we get an additional constraint
force in tangential direction at the point of contact, which might be determined by
replacing (¢;, s, ¢;) in the equations of motion with the help of one of the constraints
(20), (21) and thus determining the unknown constraint force. The same procedure
will be applied to static friction in both contact points. To put it more formally, we
start with the equations of motion in the form

Mg = h(q.q.1) (29)
with (figures 2 and 4)
4" = (912 G- 4a> 95> ¥s: Ys) € R,
M = diag (m,, my, mgy, my, L5, my, mg) € R 7, (30)
he R,
q is the vector of generalized coordinates, M the symmetric mass matrix, and the

vector h contains all forces in the system.
The two contact constraints (15) may be written as

dy(q) = w5 = |2, =& 008 g+ (p, E1 4 p,) sing; ] = 0, | (31)
0a(@) = Ys— (@, +by) — &, 5in g5 — (py € + py) cos ;] = 0.
For combining (29) and (31) it is convenient to derive the constraints (31) twice
da =0, Cdfeard=0. (S)a+ L (Tg)a=o (32)
which is abbreviated by the expression
wi(q) g +wy(q.4) =0 (i=1,2) (33)

These closing conditions generate normal constraint forces A* = (A, A,), which must
be known to determine the sliding friction forces

Fyy = — ps | Fyl (vrel,i/lvrel,il)e R? (34)

(¢t =1,2; pg = sliding friction coefficient, F,; = sliding friction forces, F, = normal
forces, v, ; = relative velocities, §2.3). The normal forces possess the direction of
the surface normal n,; (perpendicular to the supporting plane in figure 1), that is
Fy; = A;n; and |Fg,| = A,. Care must be taken in combining the equations (29), (33),
(34) by introducing lagrangian multipliers 4, which are defined in the configuration

Phil. Trans. R. Soc. Lond. A (1992)
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Stick—slip motion of turbine blade dampers 511

space (g€ R') with (f=T7), whereas Fy;€ R® is defined in a workspace. Therefore,
we must transform F;; by
* arKi * T T Urel, s
Ft, = ‘5&‘ Fyy = Jr Fry = —psJ rﬁ Ap=—Wg Ay, (35)
rei, 1
where the rg, are known from the equations (5), (6), (13), (14) and (15).
Equations (29), (33) and (34) describe the case of sliding friction in two points of
contact. If we have stiction in one point, the additional constraints (20) and (21)
must be considered ; again these can be represented in an acceleration form

W 1§ +ws0.4(q.4) =0 (i=1,2), (36)

where in the linearized case wgy, ; = 0. Therefore, for any combination of sliding
friction and stiction we can summarize the above relations in the following way by
applying a lagrangian multiplier approach

MG+ Wy ds+(W+ W) A—h =0, } (37)
WG+ Wy, =0, W'4+W,=0,
with the matrices and vectors
W = (... Wst 2, ... ..)  with  (2;€m,),
W =(.... W e ) with (2,€(2—n,)),
VVS = ( ...... wS,Zi ...... ) Wltrh (226(2’—”8‘)), (38)
Weo=0(..... Wego, " )" with  (z€my,),

)T with  (2,€(2—n,)).

The magnitude n, is the number of active constraints (n, < 2). The index scheme
(24, 2;) defines the changing combination of constraints just being active. The matrix
W, € R"-*"s represents the static friction case as given above with (2n,) active
constraints, the matrix We R" @ " represents the sliding friction case with (2—n,)
active constraints. The matrix W€ R” ? " summarizes the sliding friction forces as
given with (35), and the vectors W, € R*"» and W, e R* "= put together the wg,; — and
w,y; — terms of the equations (36) and (33). According to the discussion above the
vector Ag€ R*"= are static friction constraint forces and A€ R* "= are sliding friction
constraint forces.

The equations (37) represent (7+2n,+(2—n,)) scalar equations for the same
number of unknown accelerations § and forces Aq and 4. They can be solved for the
unknowns preferably in two steps, with regard to the fact that the constraint
equations are always decoupled from constraint forces Ag, A. Therefore, putting §
from the first equation (37) into the second and third equations we obtain for Ag, 4
the following set:

( Wg‘t M_l %t) ( Wgt M_l( W+ I}VS)) H:j‘s . [ Wgt M_lh + pI/SO:l (39)

(WM W) (WM N W+W))I[La] [ W M h+ W, |
Knowing Ay and 4 we can compute § from

4= M7 — W ds— (W+ Wy) A+ h]. (40)

This set of equations generates automatically the correct combination of magnitudes

g, Ag, 4, which corresponds to the combination of active constraints and thus to the

Phil. Trans. R. Soc. Lond. A (1992)
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512 F. Pfeiffer and M. Hajek

actual degrees of freedom. This statement is true if existence and definiteness of the
solution is assured, which can be shown for special cases. Critical configurations are
always bodies with more than one stick—slip contact. General aspects of this problem
are still a matter of on-going research.

2.5. Switching conditions

The transition from sliding friction to static friction is indicated by vanishing
relative velocity v, ;(¢.4) =0, and it is secured if the static friction force
il Bl = psi Ay (g static friction coefficient) is larger than the constraint force
|E,| = Ag; in the tangent plane of contact. We call the difference (ug,|Fyil—|F.,l)
‘friction saturation’. The transition from static to sliding friction takes place for zero
friction saturation and non-zero relative acceleration a,,, ;, which consequently must
result in a non-zero velocity v, ; after the first integration step.

From this we can organize the sequence of events in the following way:

transition sliding to static friction (n, constraints activated),

Vet i@, 4:1) =0 (i€ny,); (41)
static friction state
Vver, i@, 4, 1) =0, pgi | Bl —1E;[ 20 (ien,); (42)
transition static to sliding friction
/’LSleNj|'—(Ej| =0, “rel,j(q»q,t) #0; (43)
sliding friction state (see (35))
Vret, (4, 4,8) # 0, Fif;=—wyl,e R (44)

For finding out a beginning transition all indicators must be evaluated and checked
for a change of sign. A transition event is going to happen in that contact ke 2, where
the transition condition is fulfilled in shortest time, formally :

(Aty) s = min{(At) g5 | Vper (4, 451) = 0 A (g |1 Byl — |Fyl) = 0}, (45)
jee2

(Aty) s = min{(At]’)sal (ﬂsj IFN]"*IF;]'D =0A “rel,j(q»q»t) # 0}. (46)
je2

The first (At,)qs is the time step from some transition event having taken place in
some contact to a new transition sliding-static-friction taking place in contact k. The
second (Af,) e is the shortest time step from a static to a sliding friction mode in
contact k. Kach transition event generates a new combination of contact constraints.
Therefore, the constraint matrices in (38) have to be arranged in a new manner. This
property leads to a time-variant topology of the system. Interpolating switching
points includes some severe numerical problems with respect to the physical
consistency of the solution. Details may be found in the doctoral dissertation of
Hajek (1990).

3. Results

3.1. Comparison with experiments

In a first step it was necessary to prove the theory by experiments considering the
fact that little experience exists about the reality of modelling a sequence of
switching points and transitions. Therefore, a test set-up has been established which

Phil. Trans. R. Soc. Lond. A (1992)
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damper
supporting blocks
blades
< ' == bed plate

g:‘\ electromagnets

draw spring

Figure 6. Test set-up for blade damper system (Hajek 1990).

represents an experimental model of a blade damper combination (figure 6). The
damper is realized by steel elements of parabolic and circular shape. The supporting
surfaces (figure 1) are represented by two steel-blocks and the blades by two bar-like
steel plates. The centrifugal force is realized by a draw spring and the excitation by
a couple of electromagnets for each blade. The complete set is mounted on a bed
plate. Figure 7 gives an idea of excitation and measurement principles.

The excitation is controlled by a frequency generator, a counter and a phase shifter
together with two power amplifiers. Position measurements are performed with
inductive displacement transducers (S,-S;). The spring force F, is measured by a
strain gauge set-up (DMS). Data were processed by a signal processing unit and in
parallel by a digital computer with an appropriate signal processing software.

Let us first consider some typical measurements. Figure 8 shows a phase plot of the
blade vibrations as measured with sensor S; (see figure 7). It represents a periodic
solution with some higher harmonics. The cycle closes after three revolutions. A
useful measure for the damper behaviour is given with those excitation force
amplitudes F, |;.;;, which start the damper into a stick—slip motion. Before this event
we have stiction in both points of contact.

By augmenting F, step by step we reach F, ,;,,;;, where at least in one contact point
slippage occurs. We call F, ,; ;; the pull-off amplitude. Figures 9 and 10 show the
measured influence of the supporting angle v and the ‘centrifugal force’ F, on this
pull-off amplitude.

Globally, the pull-off amplitudes decrease with increasing block angles y, which
means with a more flat supporting plane. This confirms the physical idea that with
small angles vy (figure 2) the tendency for stiction increases. With increasing
centrifugal forces F, the pull-off amplitudes must be augmented, due to the fact that
increasing ¥, means increasing normal forces Fy, in the contact points and thus
increasing static friction forces.

The pull-off force amplitudes are again used for a comparison of theory and
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EM,
rm o0
YYVYYY L, | strain gauge
test e . amplifier
amplifier L—L———
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amplitudes constant force F,
q ----q electric z
1 6 power
power power
amplifier 1 amplifier 2
\ L frequency
A > counter
phase } !
shifter frequency phase
I fe A,
frequency
generator

Figure 7. Scheme of set-up for measurements (Hajek 1990). S,—S, are inductive displacement
transducers, EM, and EM, are electromagnets, DMS is the strain gauge bridge, ¢, is the magnetic
bias and ig,, i5, are control currents.

—_—

S5

velocity, g

- i

amplitude, gy, —>

Figure 8. Phase plot of measured blade vibrations.

measurements. Figure 11 gives three examples for different sets of parameters,
especially with flat or less flat parabola configurations and with different angles y.
The minimum amplitudes are located at frequencies which correspond to an
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Fi |
igure 9 Figure 10
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Figure 9. The dependence of pull-off amplitudes on block angle y and centrifugal force F,.

Figure 10. The dependence of pull-off amplitudes on centrifugal force F, and block angle .

157

1.0 7

— 0.5
Z
£ 0.2
LIJ;
» 60 64 68

F [Hz]
Figure 11. Pull-off amplitudes F, ., against excitation frequency f, (parameter F,) (Hajek 1990).
(a) Flat parabola, y = 60°; (b) flat parabola, y = 50°; (¢) medium parabola, y = 40°. On each graph
for F, = 60N : O, measurement ; — -, theory. For F, = 100N : &, measurement ; ———, theory. For
F, = 140N : 0, measurement ; ——, theory.

eigenfrequency of the blocked system with three degrees of freedom only (case (4)).
At such eigenfrequencies the force necessary to induce sliding friction is of course
very small.

It should be noted that such cigenfrequencies depend on the configuration, i.e.
angle vy, parabola, which can be seen in the three diagrams of figure 11. In the face
of a complicated theory the comparisons in figure 11 are excellent and give a certain
level of confidence into modelling. This indeed was the basis for a series of parameter

Phil. Trans. R. Soc. Lond. A (1992)

19 Vol. 338, A


http://rsta.royalsocietypublishing.org/

/
A
g\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

516 F. Pfeiffer and M. Hajek
0.5
E
3.
oF
0
0.1
0.5
wd?
45 50
Y/deg 65 10

Figure 12. Damper optimization (Hajek 1990).

investigations, where mainly the damper mass, the parabola design (p,,p, in (10))
and the angle y were considered.

Figure 12 gives a typical example with a significant optimum for a damper mass
my, of about 1 g and an angle vy of about 65°, which represents a flat type of blade
base. The coordinate q,, is the blade amplitude (figure 2). Parameter optimizations
of that type possess considerable value for gas-turbine design.

4. Summary

A damper configuration for gas-turbine blades has been analysed on the basis of
a patching method for stick—slip motion. It is assumed that the blade vibrations
induce relative motion between damper and blade platforms thus generating
dissipation. A planar model for the damper-blade configuration has been developed
with two points of contact and a maximum of five degrees of freedom. Depending on
the state of motion and due to the time-variant topology of the problem this number
can be reduced to three degrees of freedom for stiction in both points of contact. The
transitions between static and sliding friction and vice versa are governed by
vanishing relative velocities and by the friction saturation, which is the difference
between the static friction force and the corresponding constraint force in the same
direction. Evaluation of switching points for these transitions is numerically and
physically problematic, it must be handled with care. The theory has been compared
satisfactorily with experiments performed with the help of a laboratory test set-up.
Some parameter optimizations show the design tendencies for good damping
behaviour.
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